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INTRODUCTION

Magnetic hole is a bubble in a magnetised ferrofluid.1 When a non magnetic

solid particle is submerged within a ferrofluid, a stable, fixed volume and shape

magnetic hole is formed. Highly monodisperse, almost perfectly spherical, magnetic

holes are easily obtained when polystyrene microspheres are mixed with a ferrofluid.

(In what follows terms magnetic hole and sphere mean the same.)

Magnetic holes interact via dipolar forces. Each magnetic hole carries a

magnetic dipole moment of a magnitude equal to the magnetisation of the ferrofluid it

replaces and oriented in the opposite direction. When a ferrofluid sample containing

monodisperse microspheres is placed in a uniform magnetic field  
r
H , all magnetic

dipoles carried by the spheres are equal in their magnitudes and parallel to each other:

r r
µ χ= −V Heff , (1)

where V is the volume of a microsphere and χeff  is the effective volume

susceptibility of the ferrofluid.

Fig.1  Plastic microspheres submerged in a magnetised ferrofluid - a

practical realisation of the idea of magnetic holes.
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That all dipole moments are parallel to each other, simplifies considerably

their interactions. The total interaction energy of N magnetic holes is given by:

[ ]
∑ ∑

= += 









 ⋅µ

−
µ

=
N

i

N

ij ij

ij

ij
N r

rt
r

ttrrrU
1 1

5

2

3

2

21

)(3)(),,...,,(
rr

rrr (2)

where  
r r rr r rij j i= −   is the vector joining centres of the interacting spheres.

For a time dependent (e.g. rotating) magnetic field the dipole moments are

also time dependent, what is explicite marked in the equation. One must remember,

however, that as long as the time dependent magnetic field stays uniform, the

magnetic dipole moments carried by each of the holes stay parallel to each other and

Eq.2 preserves its validity.

EXPERIMENTAL SET-UP

Experiments we performed were carried out in a planar geometry. The

ferrofluid with polystyrene microspheres dispersed in it was contained in a thin box

formed by two parallel glass plates (microscope slide and cover glass). The distance

between the plates was typically twice the diameter   σ  of the microspheres, where  σ

was about 100 µm. The cell was placed within a system of two pairs of coils

producing  magnetic field rotating within the plane of the cell. A transmission optical

microscope was used to observe motion of the microspheres. See Fig.2. Interesting

modes of motion were recorded using a video-tape recorder. 

The number  N  of microspheres in the central part of the sample (seen within

the view field of the microscope) was controlled by means of a hand-held magnet,

which allowed the experimenter to push away unwanted spheres, or pull the wanted

ones into the view.

Experiments with  N=2,3,...,10 spheres were performed with the aim to

determine typical modes of their motion at various frequencies of the rotating field. In
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what follows we shall describe results of numerical simulations of such experiments.

As indicated in Fig.2, motion of the microspheres was limited to the (x, y)-plane. In

the experiments we shall describe, vector of the magnetic field was also limited to the

plane. Thus, the whole problem becomes  two-dimensional.

              

Fig. 2  Experimental set-up.

Numerical simulations we present below are carried out in the same planar geometry.

EQUATIONS OF MOTION

AND THE NUMERICAL SIMULATION PROCEDURE

Starting from Eq.2 one can easily find magnetic forces acting on each of the

spheres. For reasons explained above, only the x and y components of the forces are

relevant here. As easy to find, the force on i-th sphere is described by the following

equations:
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where for the field  
r
H t( )  rotating with angular velocity  ω all magnetic dipole

moments carried by the spheres are described by:

µ α ω
µ α ω

x x

y y

t H t
t H t

( ) sin( )
( ) cos( )

=
=

(5)

For all considered below cases we assumed that Hx=Hy=H.

 In view of the large viscosity of the ferrofluid inertial forces can be

neglected. Thus, we assumed that at any time the velocity of i-th hole was

proportional to the force given by Eqs. 3 and 4:

dx
dt

Fi
i x= β , (6)

dy
dt

Fi
i y= β , (7)

Eqs.3-7 describe completely motion but cannot be integrated analytically. On

the other hand, they can be easily integrated numerically. We performed the task with

an appropriately modified Runge-Kutta algorithm. The integration algorithm must
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take into account situations when calculated displacements of the spheres lead to their

overlapping, which is not allowed, of course. To prevent this, after each step of a

standard Runge-Kutta integration procedure the distance between all pairs of spheres

were controlled and all overlappings were immediately removed by pushing the

overlapping spheres apart (along the axis determined by positions of their centres), so

that they would just touch. See Fig.3. This simple procedure proved to be very

effective and allowed us to simulate the particular modes of motion in which the

spheres rotate in small, closely packed aggregates. The check-and-remove

overlapping procedure may easily introduce unpleasant side effects like a constant

drift of the controlled aggregate. One of the essential factors is the ordering in which

pairs of spheres are checked. It cannot be fixed in all steps of the simulation

procedure.

Fig.3 Scheme of the check-and-remove overlapping procedure.

a - position before the Runge-Kutta integration step. Arrows indicate

directions of the calculated displacements.

b - position after the integration step. Arrows indicate directions of the

remove-overlapping step.

c - final position

In what follows we put σ=1, α=1, H=1  and β=1 what transforms Eqs.3-7

into a dimensionless form. The single free parameter left is thus ω - the angular

velocity of the external field.
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RESULTS

Below, we shall discuss a few typical modes of periodic motion observed at

different frequencies of the rotating field for N=2,...,8.

N=2 case

In the simplest case N=2 motion of the pair of magnetic holes is relatively

simple. For ω=0, i.e. a static magnetic field, the lowest energy configuration is

achieved when the spheres stay in touch and the vector which joins their centres is

parallel to the direction of the magnetic field.

As the magnetic field starts slowly rotating, the pair starts rotating as well.

For a fixed ω, a constant phase lag develops. Motion of the magnetic holes is phase-

locked to the motion of the magnetic field. Let us denote this mode of motion by

M0
2( ) .  The value of the phase lag increases with ω. See Fig.4.

Fig.4 Configuration of the magnetic field and the pair of holes below the

critical frequency ω0
2( ) . Motion of the pair of holes is phase-locked to the motion of

the magnetic field. The phase lag θ is constant with time.
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 At a critical value  Ω0
2( ) , the phase lag reaches its maximum θ =

(ω i
N

i
N( ) ( ),Ω  denote, respectively, lower and upper limits of stability for the i-th

mode of motion observed for an aggregate of N magnetic holes.) As the threshold is

crossed, the motion of the pair becomes more complex.

Above the maximum phase lag, the forces, which make the pair of magnetic

holes follow the field, diminish. As a result, the field is able to escape and phase

locked motion of the pair develops  phase defects. In each of the defects the phase of

the pair slips behind the field by π. During this process, the mutual orientation of the

field and the pair becomes such that for a while the magnetic forces start pushing the

holes apart. Thus, in addition to the jerky angular motion, a pulsing radial motion

occurs. Let us denote this new mode of motion by M1
2( ) .

We come now to the problem of how to present the motion of the rotating

magnetic holes. The simplest way is to show a sequence of frames cut from the

numerical simulation, long enough to cover at least one period of the motion . See

Fig.5.
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Fig.5  Motion of a pair of magnetic holes above the critical frequency Ω0
2( ) . A phase

defect in the field-pair motion is seen to develop. Frames, in which recorded

configuration is such that the interaction between the spheres is repulsive are marked

with a shadowed background.

In addition to the frame by frame recordings of the type shown in Fig.5 we

shall apply plots in which positions of the moving spheres within the (x,y) plane (as

seen at π/4 angle) are plotted versus time. To make the plots more transparent the

diameter of the holes is reduced by half. As a result one may see better the internal

structure of the motion. See Fig.6.

Fig.6  Structure of the space-time

plots. Circular sections of the

moving spheres are plotted versus

time. The diameter of the spheres is reduced by half.
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For the case of only two holes the plot is simple but for frequencies above

the critical one it still looks rather entangled. See Fig.7

Fig.7 Space-time plot of the moving pair of magnetic holes below and above the

critical frequency Ω0
2( )of the rotating field as seen in the laboratory frame.

When, however, the laboratory (x,y) reference frame is changed into what we

call (x', y') -"average orientation" frame, essential details of the motion become much

better visible. See Fig.8.
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Fig.8 Space-time plot of the moving pair of magnetic holes as seen in the average

direction reference frame. The pulsing radial motion of the holes above the critical

frequency Ω0
2( )becomes well visible.

The space-time plots of the kind shown in Fig.8 can be simplified still

further. Namely, (x',y') positions of the centres of the holes can be shown but in a

projection on the y' axis, which by definition determines the average orientation of the

moving aggregate of holes. Since, as discussed later, such plots allow one to analyse

complex periodic motions of the holes in terms of the knot theory, the traces of the

centres of the holes are plotted here in form of ropes. See Fig.9.

Fig.9  Y'-projected space-time plot of the motion of the centres of holes as seen in the

average direction reference frame.

For increasing frequency ω of the rotating field, the average angular

frequency of rotation for the pair of holes decreases. As a result, at ω→∞  the pair

ceases to rotate but stays closely packed, since the average radial force is in this case

attractive.

The N=2 case has been considered in detail in our previous papers.2 In

particular, we studied two distinctly different versions of the case:

- two glued together spheres

- two free spheres.
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The case of spheres which being glued to each other can but rotate as a

couple is tractable in a rigorous analytical manner.

The case of free spheres is much more difficult from the analytical point of

view. However, starting from numerical results, one is able to find some reasonable

analytical approximations.

Let us mention here, that the whole problem becomes still more interesting

(and difficult) when the rotating field is elliptical, i.e. its x and y components are not

equal. Breaking the circular symmetry of the problem results in a few new locking

type phenomena. The scope of the present study is limited but to the simpler circular

case

.
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N=3 case

Motion of three magnetic holes in a rotating field is quite non-trivial but

once observed in a numerical simulation can be well understood in simple terms.

Analysis of the problem makes a very good example of the usefulness of the

numerical simulation technique.

The simplest configuration which takes place at ω=0 is easy to guess. The

spheres are organised in a linear aggregate aligned in the direction of the magnetic

field. As ω is small, the aggregate moves as a whole following the rotating field. Let

us denote this mode of motion by M0
3( ). See Fig.10a.

It seems worth mentioning, that in the N=3 case within the rotating as a

whole aggregate the holes are aligned along a perfect line. As we shall see, this is not

the case for N>3.

Fig.10 Space-time plot of the motion of three holes below (a) and above (b) the

critical frequency Ω0
3( ) ..

Because of larger dimension of the N=3 linear aggregate, the steady state

phase lag θ, which develops, grows faster with ω than in the N=2 case. Consequently,
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the critical frequency  Ω0
3( ) , above which the phase-locked motion  M0

3( )  is no more

possible, is smaller than in the N=2 case. Above the threshold a new mode of motion

M1
3( ) becomes stable. See Fig.10b.

As seen in the figure, the motion becomes more complex. Its structure is

better visible in the average direction reference frame. See Fig.11.

Fig.11  Space-time plot of the motion of three holes below (a) and above (b)  the

critical frequency  Ωω0
3( ) as seen in the (x',y') reference frame.

In this reference frame, where rotation of the aggregate as a whole is removed, one

can see well that in a periodic manner the aggregate is divided in two unequal parts:

two of the holes remain closely packed; the third one is pushed apart. The division

alternates. As a result, apart for constant phase shifts, motions of all three spheres are

identical. This mode of motion remains stable up to high values of ω. See Fig.12.
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Fig.12  Same as in Fig.11. ω=2.0.

Explanation of the origin of the M1
3( ) mode is rather interesting. Since the

shape of the aggregate for frequencies below the critical one is perfectly linear, the

M1
3( ) mode must develop via a symmetry breaking. This symmetry breaking process

can be observed when frequency is changed rapidly from below to above the critical

one. The symmetry breaking process is well visible in the rotating average direction

reference frame. See Fig.13.

Fig.13 Symmetry breaking via which the M0
3( ) mode turns into the M1

3( )

mode.

While in the M1
3( ) mode, the three holes never become collinear. This is

very well visible in the sequence of frames where (x,y) positions of the spheres are

plotted at discrete times .
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Fig.14  Sequence of frames taken from a simulation of the M1
3( ) mode. Note that at

no time the three holes become collinear. The symmetry is permanently broken.

When the frequency crosses another threshold value Ω1
3( ) , M1

3( ) mode

collapses - the spheres become closely packed into a regular triangle.

Fig.15 Above Ω1
3( ) , M1

3( ) mode collapses into a motionless, closely packed

triangular structure.

As seen in Fig.15, due to its symmetry, the triangular aggregate does not rotate. This

singular mode of (no)motion we denote by M3
3( ). It remains stable and motionless at

any frequency, also below Ω1
3( ) . To make the holes move again, one must break the

triangular configuration.
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N=4 case

The set of possible modes of an aggregate of 4 magnetic holes is more rich.

As previously, at small  ω  the linear chain rotates in phase with the magnetic field.

See Fig.16.

Fig.16 M0
4( )  mode as seen in the laboratory frame. Note, that the aggregate in motion

is not perfectly linear.

This phase-locked mode M0
4( )  looses stability at the first critical frequency  Ω0

4( )

where a new, better solution  M1
4( )  is found by the holes. See Fig.17.
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Fig.17 M1
4( )  mode of motion as seen in the laboratory reference frame.

Its internal structure is clearly visible in the rotating reference frame

(x',y').See Fig.18.

Fig.18 M1
4( )  mode as seen in the rotating reference frame. The (x',y') average

direction reference frame slowly rotates in the laboratory reference frame. See Fig.17.

Being not able to follow the rotating field as a whole linear chain, the

aggregate divides periodically into two pairs, which due to their smaller dimensions

are able to rotate with the frequency forced by the field. A long space-time plot taken

in the laboratory frame reveals that, in addition to these partial rotations, the

aggregate rotates slowly as a whole. In ballet terms, M1
4( )  mode of motion is a waltz

performed by two pairs of dancers which  regularly meet to form for a while a team of

four but never exchange partners. Fig.19. shows when and which of the performers

touch during the dance.
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Fig.19 Space-time plot of the M1
4( )  mode in the rotating reference frame. Lines

drawn in the plot indicate which holes stay in touch a a given time.

M1
4( )  remains stable in a broad range of frequencies from  Ω0

4( )=0.4 to

Ω1
4( )=1.1. In the range ω∈(1.1, 1.3) the situation is not clear. From ω2

4( )=1.3 up to

Ω2
4( )=1.4  another mode of periodic motion - M2

4( )  is observed. See Fig.20.

Fig.20 M2
4( )  as seen in the (x',y') reference frame. Compare with Fig.17.
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The magnetic hole dance presented in the figure is no more a simple waltz

performed by two pairs of dancers. Here, after each turn, the pairs exchange those

partners which are at the time inside the group. As a result of this "turn in pairs,

change partners" rule, each performer dances for a while with any other. The rule is

better seen within a sequence of frames. See Fig.21 and 22. Note the numbers which

index the dancers.

Fig. 21 M2
4( )  mode of motion as seen in the rotating reference frame. Bonds drawn in

the figure indicate when and which of the holes stay in touch at a given moment of

time.
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Fig.22 Sequence of frames taken from simulation of the M2
4( )  mode of motion as

seen in the laboratory reference frame.

Above Ω2
4( )=1.35 M2

4( )  mode collapses. The holes become packed into a

compact, slightly oscillating  parallelepiped. This new, compact form of motion

denoted by M3
4( )  is stable up to infinite frequencies. On the other hand  M3

4( )  proves

to be  stable also below the threshold at which it was born. However, when ω drops

below ω3
4( )=Ω4

4( )=0.95, its oscillations turn into what can be described as a

"breathing' mode - M4
4( ) . See Fig.23.
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Fig.23  The breathing mode of the compact form of the aggregate of four magnetic

holes.

Below ω4
4( )=0.53  the breathing mode looses stability and the aggregate

recovers its linear form. Experiments described above prove that at a given value of ω

a few stationary modes of motion may be possible. Which of the modes is chosen

depends on the history of the system, or, from a different point of view, on the initial

conditions. This is a typical feature of nonlinear systems.
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N=5 case

Motion of five magnetic holes is still more rich. As previously, we start with

the phase locked mode M1
5( ), whose range of stability covers frequencies from

ω1
5( )=0 to Ω1

5( )=ω2
5( )=0.24 above which a new M2

5( ) mode becomes stable.

.  At ω1
5( )=0 the chain of holes is perfectly linear. As ω increases its shape is

distorted into an S-shaped curve. See Fig.24. This distortion is observed for any N>3.

Certainly, there should be a neat analytical approximation for it, at least for large N.

.

Fig.24  The S-shape of the rotating

chain of magnetic holes observed within the

M1
5( ) mode of motion close to its upper

stability limit Ω1
5( ). ω=0.23. The space-time

plot is made in the rotating (x',y') reference

frame.  Magnetic holes are plotted at their full

diameter.

Above the threshold the linear aggregate of five magnetic holes is not able to

follow the field as a whole and is forced to divide into smaller pieces. Due to the odd

number of holes there is a confusion how to divide the chain. Solution of the problem

is identical to that we already discussed at N=3 case. The most democratic division, 2-

1-2, would conserve symmetry of the S-shape observed for the M1
5( ) mode, but

proves to be unstable. In such a division the central hole should stay all time at the

origin of the reference frame, at which the symmetry axis is located, while the 2 hole

pieces would individually catch up and follow the field. As easy to see, this is not a

local minimum of the magnetic energy for the whole interval of the rotation of the 2

hole pieces. Consequently, the symmetry is broken and the aggregate becomes
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divided into two unequal pieces, of 2 and 3 holes, which due to their small linear

dimensions are able to catch up and follow the field. After a rotation by π, the two

pieces unite into a single aggregate, but its shape is no more a symmetrical S. For a

while the aggregate rotates as a single, connected piece. During this time its shape

evolves slightly. In the next crisis the division has the same structure. This mode of

motion we denote by M2
5( ). See Fig.25.

Fig.25  M2
5( )  mode as seen in the rotating reference frame. Spheres which stay in

contact are connected with linear bonds.

Above Ω2
5( )=0.37 the M2

5( ) mode looses stability and gives place to a new

mode - M3
5( ). See Fig.26. In this mode the division into a couple and a triple of holes

alternates.
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Fig.26 M3
5( )  mode as seen in the rotating reference frame. Spheres which stay in

contact are connected with lines.

Mode M2
5( ) can be seen as a composition of one M0

2( )  and one M0
3( )

mode. The modes are strongly coupled but, as seen in Fig.25, although deformed,

they preserve their identity. This interaction changes with ω what at ω=0.37 makes

them to mix. The resulting motion is rather complex and sensitive to parameters of the

integration procedure, thus we would not like to draw at the moment too firm

conclusions. What seems, however, certain is that at ω=0.4 the M3
5( ) mode settles

down. In this mode, as seen in Fig.26,  the mixing process becomes regular. The

M3
5( ) proves to be stable up to Ω3

5( )=0.9. Close to the threshold the mechanism of

the motion becomes clear. Frame by frame recordings reveal it. See Fig.27.
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Fig.27  A few frames recorded during simulation of the M3
5( ) mode. Note the V-

shaped form of the aggregate and the position of the magnetic field at the moments

when all holes stay in touch.

Being longer, the three hole piece has more problems to follow the field. The V-

shaped form of the aggregate makes it easier. Namely the aggregate is always cut in

such a manner that the direction of the three hole piece stays closer to the field that of

the two hole piece.

In the frequency range form 1.0 up to 1.2 the situation is not clear. We have

not identified any type of a periodic motion. We cannot state, however that the motion

in this region is chaotic. Problems of the type remain open.

Above ω4
5( )=1.3 a new, very interesting mode of periodic motion M4

5( )

becomes stable. Fig.28 presents a piece of the space-time plot of it.
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Fig.28 M4
5( ) mode of motion as seen in the rotating (x;'y') reference frame.

Here the aggregate of five holes is cut by the rotating field into three pieces: two pairs

and a single. The single is always located at the ends of the aggregate. The frame by

frame recording shows it even better. Fig.29.

Fig.29 Frame by frame story of the hole motion while within the M4
5( ) mode.
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The time distance at which consecutive frames were recorded was chosen such that

one "unit cell" of the motion covers one row of the table of frames.

The M4
5( ) mode remains stable up to Ω4

5( )=1.43. Above the threshold it

collapses and a compact aggregate is formed. As in the N=4 case it oscillates slightly.

The oscillating mode of motion we denote by M5
5( ). See Fig.30.

Fig.30 One period of the oscillation of the compact aggregate of five holes formed

above Ω4
5( )=1.43.

The compact form of the aggregate remains stable also for lower frequencies.

At ω=0 it is closely packed; this is just another low energy configuration of five

holes. For ω small enough, ω<Ω6
5( )=0.25, the aggregate rotates as a whole following

the field. We denote this mode of motion by M6
5( )

.
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N=6 case.

The N=6 case is the last we present. Collection of its mode of motion starts

with a single chain phase-locked mode M0
6( ) . The S-shaped deformation of the linear

configuration is still better visible here.

Fig. 31 The S- shaped deforma-

tion of a single chain aggregate of

6 magnetic holes close to the

upper stability limit of the M0
6( )  mode. ω=0.15.

The M0
6( )  mode looses stability above Ω0

6( ) . Above the threshold the phase

lag crosses its critical value and the chain is forced to find a different way of

following the escaping field. The solution is obvious: it divides into two equal pieces,

which being shorter are able to follow the field. This mode of motion analogous to all

previously discussed M N
1
( ) modes,  where N is an even number. We present it here

in form of a rope type plot. See Fig.32.
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Fig.32  Rope representation of the M1
6( )  mode. The plot is made in the rotating

reference frame.

The divide-in-two-and-rotate solution proves to be too slow above Ω1
6( )=0.5

threshold. The obvious alternative is  divide-in-three-and-rotate. Indeed, this kind of

motion, let us denote it by M3
6( ) ,  is observed in the frequency range from ω3

6( )=0.6

to Ω3
6( )=0.8. See Fig.34. In-between, another, intermediate solution M2

6( )  is found.

See Fig.33.

Fig.33 Rope representation of the M2
6( )  mode

Fig.34 Rope representation of the M3
6( )  mode

The M3
6( )  mode proves to be stable in a narrow frequency range. Its precise

determination needs some more work. Anyway, it is unstable for ω ∈( . , . )0 9 1 2  we
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have not found any kind of a periodic motion. However, at ω = 1 3.  motion of the 6

holes once more proves to be periodic. See Fig.35.

Fig.35  Rope representation of the M4
6( )  mode.

THE PROBLEM OF PERIODICITY

Rotational motion of magnetic holes seems to be very interesting from the

formal point of view. The basic questions one asks solving numerically equations of

motion are:

(i) Is the motion periodic?

(ii) If so, which is its period?

First of all, let us note that what matters here is not the laboratory frame

configuration of the holes { }N
iii tytx 1)(),( = , which should repeat itself after a certain

time T,

{ }N
iii kTtykTtx 1)(),( =++ ={ }N

iii tytx 1)(),( = ,  k=1,2,... (8)

but rather their configuration as seen within the reference frame rotating with

the magnetic field:  { }N
iii tytx 1

'''' )(),( = . All forces which make the system move depend

on the relative positions of the holes and the magnetic field. The motion is periodic if

this relative configuration is recovered in equal intervals of time:
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{ }N
iii kTtykTtx 1

'''' )(),( =++ ={ }N
ii tytx 1

'' )(''),( = ,  k=1,2,... (9)

For the sake of clarity, most figures we presented were plotted in the

"average direction" reference frame (x',y'). Let us explain in more detail how the

position of the reference frame was determined all calculations.

Centres of N holes in question make in the laboratory (x,y) plane a kind of

discrete plot which in a standard manner one can fit with a straight line. (In the case

when at ω=0 the holes are arranged in a linear chain the lines just goes through the

centres of the holes.) Except for some singular configuration the straight line fit is

well defined. The average direction reference frame thus defined rotates with the

aggregate.

Using the notion of the average direction reference frame one can define

periodic motion as such in which:

{ }N
iii kTtykTtx 1

©' )'(),( =++ ={ }N
iii tytx 1

'
'

' )(),( = ,  k=1,2,... (10)

Let us note that when the motion as seen in the (x',y') reference frame repeats

itself with periodicity T so must repeat itself the phase the phase of the magnetic field

as seen in the same reference frame

)()( '
'

' tkTt HH ϕ=+ϕ (11)

Definition of periodicity given by Eq. 10 is too restrictive. It requires that all

magnetic holes recover their original positions within the rotating aggregate.

Analysing figures we presented one can easily notice that each of the plots of periodic

motions is composed from units which are much shorter. Definition of the periodicity

must take into account the fact that even when the holes do not return to their original

positions, the overall shape of the aggregate can be recovered. Thus, the proper

definition should be as follows:

Definition
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Motion of N magnetic holes is periodic when

{ }N

ipippip kTtykTtx
1

'
)(

'
)( )(),(

=
++ ={ }N

iii tytx 1
'' )(),( = ,  k=1,2,... (12)

where p(i), i=1, 2, ..., N, denotes an arbitrary permutation of the indexes

which number the holes.

The shortest interval of time Tp for which Eq.12 is fulfilled is called the

permutational period of motion.



34

HOLES AND KNOTS

Plots of the magnetic holes motion as seen in the average direction reference

frame invite one to apply basic notions of the knot theory. Interpreting the space-time

trajectories of the holes as ropes one may ask what kind of knots one obtains

connecting ends of a few period segment of such trajectories to their beginnings.

To start with let us analyse a few  simplest cases. For N=2, there is but one

answer. Both for the M0
2( )  and M1

2( )  modes , regardless the length of the trajectory

segment the ends joining procedure leads to two disconnected loops. See Fig.36.

Fig.36 Knot analysis of the  M1
2( )  mode.

Situation is much different for N=3. Here, results of the ends joining

procedure depend on both the mode studied and the length of the trajectory segment.
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Within the M0
3( ) mode trajectories of the all three particles never mix. As a

result the knot scheme is analogous to that of  M0
2( )  and M1

2( )  modes.

Within the M1
3( ) mode the trajectories change places. Knot scheme depends

on the length of the segment. See Fig.37.

If the length of the segment is equal to the permutational period Tp of the

mode, its knot scheme is equivalent to a single loop.

If the length of the segment is equal to 2Tp then its knot scheme is equivalent

to the trefoil knot.

Finally, if the length is equal to 3Tp then the knot scheme of the segment is

equivalent to the Borromean Rings.

Fig.37 Knot analysis of the M1
3( ) mode.
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........  to be continued.
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