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INTRODUCTION

Magnetic hole is a bubble in a magnetised ferrofluid.' When a non magnetic
solid particle is submerged within a ferrofluid, a stable, fixed volume and shape
magnetic hole is formed. Highly monodisperse, almost perfectly spherical, magnetic
holes are easily obtained when polystyrene microspheres are mixed with a ferrofluid.
(In what follows terms magnetic hole and sphere mean the same.)

Magnetic holes interact via dipolar forces. Each magnetic hole carries a
magnetic dipole moment of a magnitude equal to the magnetisation of the ferrofluid it

replaces and oriented in the opposite direction. When a ferrofluid sample containing

monodisperse microspheres is placed in a uniform magnetic field H , all magnetic

dipoles carried by the spheres are equal in their magnitudes and parallel to each other:

where V7 is the volume of a microsphere and ) .» is the effective volume

susceptibility of the ferrofluid.
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Fig.1  Plastic microspheres submerged in a magnetised ferrofluid - a

practical realisation of the idea of magnetic holes.



That all dipole moments are parallel to each other, simplifies considerably

their interactions. The total interaction energy of N magnetic holes is given by:
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where I_’;-j =7, —T; is the vector joining centres of the interacting spheres.
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For a time dependent (e.g. rotating) magnetic field the dipole moments are
also time dependent, what is explicite marked in the equation. One must remember,
however, that as long as the time dependent magnetic field stays uniform, the
magnetic dipole moments carried by each of the holes stay parallel to each other and

Eq.2 preserves its validity.

EXPERIMENTAL SET-UP

Experiments we performed were carried out in a planar geometry. The
ferrofluid with polystyrene microspheres dispersed in it was contained in a thin box
formed by two parallel glass plates (microscope slide and cover glass). The distance
between the plates was typically twice the diameter o of the microspheres, where o
was about 100 um. The cell was placed within a system of two pairs of coils
producing magnetic field rotating within the plane of the cell. A transmission optical
microscope was used to observe motion of the microspheres. See Fig.2. Interesting
modes of motion were recorded using a video-tape recorder.

The number N of microspheres in the central part of the sample (seen within
the view field of the microscope) was controlled by means of a hand-held magnet,
which allowed the experimenter to push away unwanted spheres, or pull the wanted
ones into the view.

Experiments with N=273,...,10 spheres were performed with the aim to

determine typical modes of their motion at various frequencies of the rotating field. In



what follows we shall describe results of numerical simulations of such experiments.
As indicated in Fig.2, motion of the microspheres was limited to the (x, y)-plane. In
the experiments we shall describe, vector of the magnetic field was also limited to the

plane. Thus, the whole problem becomes two-dimensional.
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Fig. 2 Experimental set-up.

Numerical simulations we present below are carried out in the same planar geometry.

EQUATIONS OF MOTION
AND THE NUMERICAL SIMULATION PROCEDURE

Starting from Eq.2 one can easily find magnetic forces acting on each of the
spheres. For reasons explained above, only the x and y components of the forces are
relevant here. As easy to find, the force on i-th sphere is described by the following

equations:
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where for the field H (t) rotating with angular velocity ® all magnetic dipole

moments carried by the spheres are described by:

(1) = o sin(or)

H, () =oH, cos(ot) ®)

For all considered below cases we assumed that Hy=Hy=H.
In view of the large viscosity of the ferrofluid inertial forces can be
neglected. Thus, we assumed that at any time the velocity of i-th hole was

proportional to the force given by Eqgs. 3 and 4:

dx;

7 t’ =PF, (6)
dv.
;t’ =BF,, )

Eqs.3-7 describe completely motion but cannot be integrated analytically. On
the other hand, they can be easily integrated numerically. We performed the task with

an appropriately modified Runge-Kutta algorithm. The integration algorithm must



take into account situations when calculated displacements of the spheres lead to their
overlapping, which is not allowed, of course. To prevent this, after each step of a
standard Runge-Kutta integration procedure the distance between all pairs of spheres
were controlled and all overlappings were immediately removed by pushing the
overlapping spheres apart (along the axis determined by positions of their centres), so
that they would just touch. See Fig.3. This simple procedure proved to be very
effective and allowed us to simulate the particular modes of motion in which the
spheres rotate in small, closely packed aggregates. The check-and-remove
overlapping procedure may easily introduce unpleasant side effects like a constant
drift of the controlled aggregate. One of the essential factors is the ordering in which
pairs of spheres are checked. It cannot be fixed in all steps of the simulation

procedure.

Fig.3 Scheme of the check-and-remove overlapping procedure.

a - position before the Runge-Kutta integration step. Arrows indicate
directions of the calculated displacements.

b - position after the integration step. Arrows indicate directions of the
remove-overlapping step.

¢ - final position

In what follows we put 6=1, a=1, H=1 and p=1 what transforms Eqs.3-7
into a dimensionless form. The single free parameter left is thus ® - the angular

velocity of the external field.



RESULTS

Below, we shall discuss a few typical modes of periodic motion observed at

different frequencies of the rotating field for N=2,...,8.

N=2 case

In the simplest case N=2 motion of the pair of magnetic holes is relatively
simple. For ®=0, i.e. a static magnetic field, the lowest energy configuration is
achieved when the spheres stay in touch and the vector which joins their centres is
parallel to the direction of the magnetic field.

As the magnetic field starts slowly rotating, the pair starts rotating as well.
For a fixed m, a constant phase lag develops. Motion of the magnetic holes is phase-

locked to the motion of the magnetic field. Let us denote this mode of motion by

M, (()2). The value of the phase lag increases with ®. See Fig.4.
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Fig.4 Configuration of the magnetic field and the pair of holes below the
critical frequency 0)82). Motion of the pair of holes is phase-locked to the motion of

the magnetic field. The phase lag 0 is constant with time.



At a critical value QE)Z), the phase lag reaches its maximum 6=

((DSN),QSN) denote, respectively, lower and upper limits of stability for the i-th

mode of motion observed for an aggregate of N magnetic holes.) As the threshold is
crossed, the motion of the pair becomes more complex.

Above the maximum phase lag, the forces, which make the pair of magnetic
holes follow the field, diminish. As a result, the field is able to escape and phase
locked motion of the pair develops phase defects. In each of the defects the phase of
the pair slips behind the field by w. During this process, the mutual orientation of the
field and the pair becomes such that for a while the magnetic forces start pushing the

holes apart. Thus, in addition to the jerky angular motion, a pulsing radial motion

occurs. Let us denote this new mode of motion by M. 1(2).

We come now to the problem of how to present the motion of the rotating
magnetic holes. The simplest way is to show a sequence of frames cut from the
numerical simulation, long enough to cover at least one period of the motion . See

Fig.5.

{MGH_PRN} OwmH=1.58 Hx=1.8A Hy=1.88 H=z=-A.AA dt-A.180 step= 5




Fig.5 Motion of a pair of magnetic holes above the critical frequency ng). A phase

defect in the field-pair motion is seen to develop. Frames, in which recorded
configuration is such that the interaction between the spheres is repulsive are marked

with a shadowed background.

In addition to the frame by frame recordings of the type shown in Fig.5 we
shall apply plots in which positions of the moving spheres within the (x,y) plane (as
seen at m/4 angle) are plotted versus time. To make the plots more transparent the
diameter of the holes is reduced by half. As a result one may see better the internal

structure of the motion. See Fig.6.
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Fig.6 Structure of the space-time

plots. Circular sections of the
moving spheres are plotted versus

time. The diameter of the spheres is reduced by half.
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For the case of only two holes the plot is simple but for frequencies above

the critical one it still looks rather entangled. See Fig.7

OmH= 1.58 4t=A.AA6 r.==55 Hx~Hy= 1.A8 HzA= A.BB NumOfSec=-6AA AF= —1 PF= A.58

Fig.7 Space-time plot of the moving pair of magnetic holes below and above the

critical frequency ng)of the rotating field as seen in the laboratory frame.

When, however, the laboratory (x,y) reference frame is changed into what we
call (x', y') -"average orientation" frame, essential details of the motion become much

better visible. See Fig.8.

OmH= 1.58 d4dt=8A.886 r.s=55 HxvHy= 1.8A HzA= A.B8 MNumOfSec=6AA AF= 1 PF= A.58
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Fig.8 Space-time plot of the moving pair of magnetic holes as seen in the average

direction reference frame. The pulsing radial motion of the holes above the critical

frequency ng)becomes well visible.

The space-time plots of the kind shown in Fig.8 can be simplified still
further. Namely, (x',y') positions of the centres of the holes can be shown but in a
projection on the y' axis, which by definition determines the average orientation of the
moving aggregate of holes. Since, as discussed later, such plots allow one to analyse
complex periodic motions of the holes in terms of the knot theory, the traces of the

centres of the holes are plotted here in form of ropes. See Fig.9.

{EXPENOT 93} StPerFr= 31 OmH= 1.49 4t=08.886 Hx“Hy= 1.88 HzB- 8.80 AsFlag= 1
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Fig.9 Y'-projected space-time plot of the motion of the centres of holes as seen in the

average direction reference frame.

For increasing frequency ® of the rotating field, the average angular
frequency of rotation for the pair of holes decreases. As a result, at ®—o the pair

ceases to rotate but stays closely packed, since the average radial force is in this case

attractive.

The N=2 case has been considered in detail in our previous papers.” In
particular, we studied two distinctly different versions of the case:
- two glued together spheres

- two free spheres.
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The case of spheres which being glued to each other can but rotate as a
couple is tractable in a rigorous analytical manner.

The case of free spheres is much more difficult from the analytical point of
view. However, starting from numerical results, one is able to find some reasonable
analytical approximations.

Let us mention here, that the whole problem becomes still more interesting
(and difficult) when the rotating field is elliptical, i.e. its x and y components are not
equal. Breaking the circular symmetry of the problem results in a few new locking
type phenomena. The scope of the present study is limited but to the simpler circular

case
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N=3 case

Motion of three magnetic holes in a rotating field is quite non-trivial but
once observed in a numerical simulation can be well understood in simple terms.
Analysis of the problem makes a very good example of the usefulness of the
numerical simulation technique.

The simplest configuration which takes place at ®=0 is easy to guess. The
spheres are organised in a linear aggregate aligned in the direction of the magnetic

field. As o is small, the aggregate moves as a whole following the rotating field. Let
us denote this mode of motion by M, (()3). See Fig.10a.

It seems worth mentioning, that in the N=3 case within the rotating as a
whole aggregate the holes are aligned along a perfect line. As we shall see, this is not

the case for N>3.

G

OmH= 1 dt=8.813 r.s=48 Hx Hy= 1.88 HzB= B.B88 NumOfSec=688 AF- —1 PF= 8.58

Fig.10 Space-time plot of the motion of three holes below (a) and above (b) the
critical frequency QE?) .

Because of larger dimension of the N=3 linear aggregate, the steady state

phase lag 0, which develops, grows faster with ® than in the N=2 case. Consequently,
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the critical frequency 983), above which the phase-locked motion M (()3) is no more
possible, is smaller than in the N=2 case. Above the threshold a new mode of motion
M1(3) becomes stable. See Fig.10b.

As seen in the figure, the motion becomes more complex. Its structure is

better visible in the average direction reference frame. See Fig.11.

OmH=1.88 4t=8.813 r.s=48 Hx~Hy= 1.88 HzB= A.88 Num(0f3ec=688 AF= 1 PF= B.58

Fig.11 Space-time plot of the motion of three holes below (a) and above (b) the

critical frequency Q@Ef) as seen in the (x',)') reference frame.

In this reference frame, where rotation of the aggregate as a whole is removed, one
can see well that in a periodic manner the aggregate is divided in two unequal parts:
two of the holes remain closely packed; the third one is pushed apart. The division
alternates. As a result, apart for constant phase shifts, motions of all three spheres are

identical. This mode of motion remains stable up to high values of ®. See Fig.12.
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OmH= 2.88 4t=A.A13 r.==48 Hx~Hy= 1.A8 HzA= A.B8 NumOfSec=6AA AF= 1 PF= A.58

Fig.12 Same as in Fig.11. ©=2.0.

Explanation of the origin of the M 1(3) mode is rather interesting. Since the
shape of the aggregate for frequencies below the critical one is perfectly linear, the
M 1(3) mode must develop via a symmetry breaking. This symmetry breaking process

can be observed when frequency is changed rapidly from below to above the critical
one. The symmetry breaking process is well visible in the rotating average direction

reference frame. See Fig.13.

OmH= 1.688 4t=A.AA6 r.==18A Hx~Hy= 1.88 HzA=- A.AA8 MNumOf3ec=6AA AF= 1 FF= A.54

Fig.13 Symmetry breaking via which the M, 63) mode turns into the M 1(3)

mode.

While in the M1(3) mode, the three holes never become collinear. This is

very well visible in the sequence of frames where (x,y) positions of the spheres are

plotted at discrete times .
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{MGH_PREN} OmH=2Z.8A Hx=1.8A Hy=1.88 H=z=-A.AA dt=-0.013 step= 48

=3 & 7 =

Fig.14 Sequence of frames taken from a simulation of the M, 1(3) mode. Note that at

no time the three holes become collinear. The symmetry is permanently broken.

When the frequency crosses another threshold value Qgs), M1(3) mode

collapses - the spheres become closely packed into a regular triangle.

{MGH_PRN} OmH=2.26 Hx=1.88 Hy=1.88 Hz=A.88 4t=0.825 step= 48

Fig.15 Above Q?), M1(3) mode collapses into a motionless, closely packed

triangular structure.

As seen in Fig.15, due to its symmetry, the triangular aggregate does not rotate. This

singular mode of (no)motion we denote by M 3(3). It remains stable and motionless at

any frequency, also below Q?) . To make the holes move again, one must break the

triangular configuration.
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N=4 case

The set of possible modes of an aggregate of 4 magnetic holes is more rich.

As previously, at small ® the linear chain rotates in phase with the magnetic field.

See Fig.16.

OmH= A.25 d4dt=A.858 r.s=41 HxvHy= 1.8A HzA=- A.AA8 NumOf3ec=4AA AF= —1 PF= A.54
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Fig.16 M, (()4) mode as seen in the laboratory frame. Note, that the aggregate in motion

is not perfectly linear.

This phase-locked mode M, (()4) looses stability at the first critical frequency Qg‘)

where a new, better solution M. 1(4) is found by the holes. See Fig.17.

OmH= B8.58 4t=0.858 r.s=41 Hx~Hy= 1.88 HzB- 8.88 NumOfSec=488 AF= —1 PF= B.58

(i
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Fig.17 M, 1(4) mode of motion as seen in the laboratory reference frame.

Its internal structure is clearly visible in the rotating reference frame

(x',y").See Fig.18.

OmH= A.58 d4dt=A.A58 r.s=41 HxvHy= 1.8A HzA=- A.AA8 NumOf3ec=4AA AF= 1 FF= A.54

Fig.18 M1(4) mode as seen in the rotating reference frame. The (x',y') average

direction reference frame slowly rotates in the laboratory reference frame. See Fig.17.

Being not able to follow the rotating field as a whole linear chain, the
aggregate divides periodically into two pairs, which due to their smaller dimensions
are able to rotate with the frequency forced by the field. A long space-time plot taken

in the laboratory frame reveals that, in addition to these partial rotations, the
aggregate rotates slowly as a whole. In ballet terms, M 1(4) mode of motion is a waltz

performed by two pairs of dancers which regularly meet to form for a while a team of
four but never exchange partners. Fig.19. shows when and which of the performers

touch during the dance.
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OmH= B8.58 4t=A.A58 r.==41 Hx~Hy= 1.A8 HzA= A.B8 MNumOfSec=2AA AF= 1 PF= A.58
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Fig.19 Space-time plot of the Ml(4) mode in the rotating reference frame. Lines

drawn in the plot indicate which holes stay in touch a a given time.

M1(4) remains stable in a broad range of frequencies from 984)20.4 to
Q§4)=1.1. In the range we(1.1, 1.3) the situation is not clear. From 0)(24)21.3 up to

Q(24)=1 4 another mode of periodic motion - M 54) is observed. See Fig.20.

OmH= 1.38 4t=A.AA6 r.==18A Hx~Hy= 1.88 HzA= A.8@ MNumOfSec=688 AF= 1 PF= B.58

Fig.20 M. 54) as seen in the (x',)") reference frame. Compare with Fig.17.
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The magnetic hole dance presented in the figure is no more a simple waltz
performed by two pairs of dancers. Here, after each turn, the pairs exchange those
partners which are at the time inside the group. As a result of this "turn in pairs,
change partners" rule, each performer dances for a while with any other. The rule is
better seen within a sequence of frames. See Fig.21 and 22. Note the numbers which

index the dancers.

OmH= 1.38 d4dt=A.8A6 r.==88 HxvHy= 1.8A HzA= A.AA8 NumOf3ec=ZAA AF= 1 FF= A.54

Fig.21 M §4) mode of motion as seen in the rotating reference frame. Bonds drawn in

the figure indicate when and which of the holes stay in touch at a given moment of

time.



{MGH_PRN} OwH=1.3A Hx=1.88 Hy=1.88 H=z=-HA.AA dt=0.050 step= 20
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Fig.22 Sequence of frames taken from simulation of the M§4) mode of motion as

seen in the laboratory reference frame.

Above Q(24)=1.35 M§4) mode collapses. The holes become packed into a
compact, slightly oscillating parallelepiped. This new, compact form of motion
denoted by M §4) is stable up to infinite frequencies. On the other hand M §4) proves
to be stable also below the threshold at which it was born. However, when o drops

(4)_

below (OB Qg4)=0.95, its oscillations turn into what can be described as a

"breathing' mode - M£4). See Fig.23.
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{MGH_PREN} OmH=A.95 Hx=1.88 Hy=1.88 H==-HA.AA dt=-0.006 step=20Q

Fig.23 The breathing mode of the compact form of the aggregate of four magnetic

holes.

Below 0324)=0.53 the breathing mode looses stability and the aggregate

recovers its linear form. Experiments described above prove that at a given value of ®
a few stationary modes of motion may be possible. Which of the modes is chosen
depends on the history of the system, or, from a different point of view, on the initial

conditions. This is a typical feature of nonlinear systems.
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N=35 case

Motion of five magnetic holes is still more rich. As previously, we start with

the phase locked mode MI(S), whose range of stability covers frequencies from
0)%5)=0 to Q§5)=m(25)=0.24 above which a new M 55) mode becomes stable.

. At 0)%5)=0 the chain of holes is perfectly linear. As ® increases its shape is

distorted into an S-shaped curve. See Fig.24. This distortion is observed for any N>3.

Certainly, there should be a neat analytical approximation for it, at least for large N.

Fig.24 The S-shape of the rotating

chain of magnetic holes observed within the

Ml(s) mode of motion close to its upper

stability limit QgS) . ®=0.23. The space-time

plot is made in the rotating (x',y') reference
frame. Magnetic holes are plotted at their full

diameter.

Above the threshold the linear aggregate of five magnetic holes is not able to
follow the field as a whole and is forced to divide into smaller pieces. Due to the odd
number of holes there is a confusion how to divide the chain. Solution of the problem

is identical to that we already discussed at N=3 case. The most democratic division, 2-
1-2, would conserve symmetry of the S-shape observed for the MI(S) mode, but

proves to be unstable. In such a division the central hole should stay all time at the
origin of the reference frame, at which the symmetry axis is located, while the 2 hole
pieces would individually catch up and follow the field. As easy to see, this is not a
local minimum of the magnetic energy for the whole interval of the rotation of the 2

hole pieces. Consequently, the symmetry is broken and the aggregate becomes
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divided into two unequal pieces, of 2 and 3 holes, which due to their small linear
dimensions are able to catch up and follow the field. After a rotation by =, the two
pieces unite into a single aggregate, but its shape is no more a symmetrical S. For a
while the aggregate rotates as a single, connected piece. During this time its shape

evolves slightly. In the next crisis the division has the same structure. This mode of

motion we denote by M. 55). See Fig.25.

OmH= 8.38 4t=8.825 r.s=180 Hx Hy= 1.88 HzB= A.88 Num0f3ec=288 AF= 1 PF- A.58
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Fig.25 Més) mode as seen in the rotating reference frame. Spheres which stay in

contact are connected with linear bonds.

Above Q(25)=0.37 the M. és) mode looses stability and gives place to a new

mode - M §5). See Fig.26. In this mode the division into a couple and a triple of holes

alternates.
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OmH= 8.48 4t=0.825 r.s=180 Hx Hy= 1.88 HzB= A.88 Num0f3ec=288 AF= 1 PF- A.58
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Fig.26 M3(5) mode as seen in the rotating reference frame. Spheres which stay in

contact are connected with lines.

Mode Més) can be seen as a composition of one M(()z) and one M(()3)

mode. The modes are strongly coupled but, as seen in Fig.25, although deformed,
they preserve their identity. This interaction changes with ® what at ®=0.37 makes
them to mix. The resulting motion is rather complex and sensitive to parameters of the

integration procedure, thus we would not like to draw at the moment too firm
conclusions. What seems, however, certain is that at ®=0.4 the M§5) mode settles
down. In this mode, as seen in Fig.26, the mixing process becomes regular. The
M; ) proves to be stable up to Q(S) =0.9. Close to the threshold the mechanism of

the motion becomes clear. Frame by frame recordings reveal it. See Fig.27.
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{MGH_PRN} OmH=8.880 Hx=1.88 Hy=1.88 H=z-8.88 4t=0.858 step= 39

Fig.27 A few frames recorded during simulation of the M§5) mode. Note the V-

shaped form of the aggregate and the position of the magnetic field at the moments

when all holes stay in touch.

Being longer, the three hole piece has more problems to follow the field. The V-
shaped form of the aggregate makes it easier. Namely the aggregate is always cut in
such a manner that the direction of the three hole piece stays closer to the field that of
the two hole piece.

In the frequency range form 1.0 up to 1.2 the situation is not clear. We have
not identified any type of a periodic motion. We cannot state, however that the motion

in this region is chaotic. Problems of the type remain open.
Above 0)25)21.3 a new, very interesting mode of periodic motion M ‘(¥5)

becomes stable. Fig.28 presents a piece of the space-time plot of it.



OmH= 1.38 4t=A.A58 r.==18 Hx~Hy= 1.A8 HzA= A.BB NumOfSec=2AA AF= 1 PF= A.58
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Fig.28 M 4(‘5) mode of motion as seen in the rotating (x;'y") reference frame.
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Here the aggregate of five holes is cut by the rotating field into three pieces: two pairs

and a single. The single is always located at the ends of the aggregate. The frame by

frame recording shows it even better. Fig.29.

{MGH_PRN} OmH=1.38 Hx=1.88 Hy=1.P8 H=z-A.80 d4t=0.058 step= 3B
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Fig.29 Frame by frame story of the hole motion while within the M ‘(‘5) mode.
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The time distance at which consecutive frames were recorded was chosen such that

one "unit cell" of the motion covers one row of the table of frames.
The M 4({5) mode remains stable up to Qgs)zl 43. Above the threshold it
collapses and a compact aggregate is formed. As in the N=4 case it oscillates slightly.

The oscillating mode of motion we denote by M, §5). See Fig.30.

{MGH_PRN} OmH=1.76 Hx=1.88 Hy=1.88 Hz=8.88 4t=0.825 step= 31

Fig.30 One period of the oscillation of the compact aggregate of five holes formed

above QgS)ZI 43.

The compact form of the aggregate remains stable also for lower frequencies.

At ®=0 it is closely packed; this is just another low energy configuration of five

holes. For ® small enough, u)<Q(65)=0.25, the aggregate rotates as a whole following

the field. We denote this mode of motion by M éS)
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N=6 case.

The N=6 case is the last we present. Collection of its mode of motion starts
with a single chain phase-locked mode M 66) . The S-shaped deformation of the linear

configuration is still better visible here.

L H

Fig. 31 The S- shaped deforma-
tion of a single chain aggregate of

6 magnetic holes close to the

upper stability limit of the M (()6) mode. ®=0.15.

The M, (()6) mode looses stability above Qg@. Above the threshold the phase

lag crosses its critical value and the chain is forced to find a different way of
following the escaping field. The solution is obvious: it divides into two equal pieces,

which being shorter are able to follow the field. This mode of motion analogous to all
previously discussed M I(N) modes, where N is an even number. We present it here

in form of a rope type plot. See Fig.32.
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Fig.32 Rope representation of the M1(6) mode. The plot is made in the rotating

reference frame.

The divide-in-two-and-rotate solution proves to be too slow above Q§6)=0.5
threshold. The obvious alternative is divide-in-three-and-rotate. Indeed, this kind of

motion, let us denote it by M. §6), is observed in the frequency range from (Dg6)=0.6

to Qg6)=0.8. See Fig.34. In-between, another, intermediate solution M 56) is found.

See Fig.33.
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Fig.33 Rope representation of the M (6) mode
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Fig.34 Rope representation of the M (6) mode

The M §6) mode proves to be stable in a narrow frequency range. Its precise

determination needs some more work. Anyway, it is unstable for ® €(0.9, 1.2) we
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have not found any kind of a periodic motion. However, at ® = 1.3 motion of the 6

holes once more proves to be periodic. See Fig.35.

{EXPENOT 93} StPerFr= ZA OmH= 1.38 d4dt=8.825 Hx-Hy= 1.88 HzH= A.688 AsFlag= 1

Fig.35 Rope representation of the M4(f6) mode.

THE PROBLEM OF PERIODICITY

Rotational motion of magnetic holes seems to be very interesting from the
formal point of view. The basic questions one asks solving numerically equations of
motion are:

(1) Is the motion periodic?

(i1) If so, which is its period?

First of all, let us note that what matters here is not the laboratory frame

N
i=1°

configuration of the holes {xl. (®),y, (t)} which should repeat itself after a certain

time 7,
et +kD),y, @t + kDY, ={x,0,0,0),, k=1,2,... (8)

but rather their configuration as seen within the reference frame rotating with
the magnetic field: {xl (t),y, (t)}fil . All forces which make the system move depend

on the relative positions of the holes and the magnetic field. The motion is periodic if

this relative configuration is recovered in equal intervals of time:
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K@+ kD) y e +kD), =& @00, k=12.... )

For the sake of clarity, most figures we presented were plotted in the
"average direction" reference frame (x',)"). Let us explain in more detail how the
position of the reference frame was determined all calculations.

Centres of N holes in question make in the laboratory (x,y) plane a kind of
discrete plot which in a standard manner one can fit with a straight line. (In the case
when at ®=0 the holes are arranged in a linear chain the lines just goes through the
centres of the holes.) Except for some singular configuration the straight line fit is
well defined. The average direction reference frame thus defined rotates with the
aggregate.

Using the notion of the average direction reference frame one can define

periodic motion as such in which:

ka+knyfa+kry), =f@.y.0f,, k=12, (10)

Let us note that when the motion as seen in the (x',y') reference frame repeats
itself with periodicity 7' so must repeat itself the phase the phase of the magnetic field

as seen in the same reference frame

@y (t+kT) =@, (2) (11)

Definition of periodicity given by Eq. 10 is too restrictive. It requires that all
magnetic holes recover their original positions within the rotating aggregate.
Analysing figures we presented one can easily notice that each of the plots of periodic
motions is composed from units which are much shorter. Definition of the periodicity
must take into account the fact that even when the holes do not return to their original
positions, the overall shape of the aggregate can be recovered. Thus, the proper

definition should be as follows:

Definition
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Motion of N magnetic holes is periodic when
Al Al N ' Al N
b @+kT) G+ kT =t @, k=12, (12)

where p(i), i=1, 2, ..., N, denotes an arbitrary permutation of the indexes

which number the holes.
The shortest interval of time T, P for which Eq.12 is fulfilled is called the

permutational period of motion.
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HOLES AND KNOTS

Plots of the magnetic holes motion as seen in the average direction reference
frame invite one to apply basic notions of the knot theory. Interpreting the space-time
trajectories of the holes as ropes one may ask what kind of knots one obtains
connecting ends of a few period segment of such trajectories to their beginnings.

To start with let us analyse a few simplest cases. For N=2, there is but one
answer. Both for the M (()2) and M 1(2) modes , regardless the length of the trajectory

segment the ends joining procedure leads to two disconnected loops. See Fig.36.
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Fig.36 Knot analysis of the Ml(z) mode.

Situation is much different for N=3. Here, results of the ends joining

procedure depend on both the mode studied and the length of the trajectory segment.
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Within the M, 63) mode trajectories of the all three particles never mix. As a
result the knot scheme is analogous to that of M (()2) and M 1(2) modes.

Within the M, 1(3) mode the trajectories change places. Knot scheme depends

on the length of the segment. See Fig.37.

If the length of the segment is equal to the permutational period 7, P of the
mode, its knot scheme is equivalent to a single loop.

If the length of the segment is equal to 27, P then its knot scheme is equivalent
to the trefoil knot.

Finally, if the length is equal to 37, P then the knot scheme of the segment is

equivalent to the Borromean Rings.

Fig.37 Knot analysis of the M1(3) mode.



to be continued.
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